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Abstract�Statistical Mechanics has proven to be a useful
model for drawing inferences about the collective behavior of
individual objects that interact according to a known force law
(which for a more general usage is referred to as interacting
units.). Collective behavior is determined not by computing
F = ma for each interacting unit because the problem is
mathematically intractable. Instead, one computes the partition
function for the collection of interacting units and predicts statis-
tical behavior from the partition function. Statistical mechanics
was uni�ed with Bayesian inference by Jaynes who demonstrated
that the partition function assignment of probabilities via the
interaction Hamiltonian is the solution to a Bayesian assignment
of probabilities based on the maximum entropy method with
known means and standard deviations. Once this technique has
been applied to a variety of problems and obtained a solution,
one can, of course, solve the inverse problem to determine what
interaction model gives rise to a given probability assignment.
Probabilistic networks are important modeling tools in a variety
of applications including social networks. We explore the usage of
statistical mechanics as a mechanism to solve the inverse problem
to determine the underlying interaction model that gives rise to
the probabilistic network
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I. INTRODUCTION

Most academic discussions of distributed sensor networks
focus on the problems associated with the fusion of data
or the fusion of information. While these issues are impor-
tant, they are not the only real issue along the path that
motivates the reasons for distribution of sensors. Networking
of the sensors enables the sharing of data from similar as
well as disparate sensors, the fusing of the sensor data into
information, and �nally the synthesis of the information into
knowledge. Information is power is a useful maxim only if it
leads to better decisions which in turn result in better actions
by the decisions maker. Sensor networks are creating tsunami
of data that overwhelm but do not inform the end user of
networks. With that in mind, we need to ask what are the
methodologies that can dampen out the tsunami of data to
achieve effective knowledge that leads to viable actions by
the end user? While issues such as timeliness and ordering of
the data, fusion methodologies for the data, reliability of the
network, information �ow within the network, delineating the
difference between data and usable information are important;
knowledge synthesis from the information provided by the
network is the ultimate goal.
Distributed sensor networks are a topic of interest to both

the military and civilians because they offer the possibility
of increasing domain awareness in a given region. Complete
situational awareness can occur only when sensors that op-
erate at different frequencies and with different operational
characteristics are effectively combined to provide a near-real
time understanding of what is happening within a region. The
synthesized "picture" can then be combined with information
from other regions/domains to synthesize information that is of
the type that is actionable� accurate and correct decisions can
be formed based on the knowledge that has been synthesized
from the distributed sensor networks. From the perspective
of knowledge, however, the path to the future for networks
that lead to knowledge synthesis is incomplete without the
consideration of the semantic aspect of information� taking
individual observations and judgments and making them part
of the fusion problem. Ultimately, this fusion problem has to
be considered from a perspective of an end user... someone
whose career and life is on the line based on a decision to use
or not use the information for certain ends.
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From this perspective, decisions are more like designs,
weaved from a tapestry of colors and patterns which are
contradictory. When we think of a decision like a picture, the
goals of the fusion problem become quite different, and almost
unrecognizable. So how do we design a fusion problem? We
don't know how to codify Design as a speci�c law, but we
recognize it when we see it. A design is created from disparate
elements that are combined to form a composition (true of
artistic or engineering design). Each discipline has "atoms of
composition" or atomic units that are fused together to form a
speci�c instance of a design. In artistic designs, the method of
fusion is based on the individual interpretations of the group
aesthetic that falls under the aegis of "artistic temperament".
For engineers, the group aesthetic must have some familiarity
with the requirements of "physical reality". It is dif�cult to
arrive at a mathematical criteria that helps clarify the direct
problem of the process of composition.
"Probability is the logic of reasoning in the presence of

uncertainty." Assignment of probabilities based on available
information is Bayesian reasoning. This provides a solution of
assignment of probabilities as a Maximum Entropy Problem
(MEP). Thus a decomposition of a design into probabilities
can be viewed as a solution to a MEP. Given that MEP is
the method that provides the answer, then we can ask the
question: "What is the Maximum Entropy problem that an
assignment of design weights of the composition an answer
to?" Being able to answer this question for "design classes"
provides us a means to classify Design as a mathematical
problem. Design algorithms can then be ordered in terms
of the complexity of the problem solved. By providing the
mathematical basis for synthesizing design as a composition,
we hope to provide a pathway to analyze decisions from
the perspective of design. This would allow decisions to be
understood on a more quantative basis and ultimately bring
the decision maker in the fusion process in a more analytical
process.

II. PROBABILITY ISSUES ARISING IN CONNECTION
MODELS

A. Maximum Entropy Procedure
The expected value of the "surprise value" of a probability

vector jpi is

H(n) = �hpj ln pi = �
nX
i=1

pi ln pi: (surprise value)

(See Papoulis for the details of the background in this section
[9].) Note that for a deterministic probability vector, the
entropy is zero, while for a uniform vector, the entropy is
ln(n). The degree of uncertainty (which is equivalent to the
surprise value) in the information is de�ned as

S[jpi ;n] = �k hpj ln pi = �k
nX
i=0

pi ln pi; (Entropy)

Most applications do not permit one to measure the probabil-
ities pi associated with a physical variable f(xi), instead the

expected value hf(x)i is measured. Probabilities are connected
to expected values by noting the formula

E [f(x)] = hpjf(x)i =
nX
i=0

pif(xi) (Expected Value)

Maximum Entropy Method can be sumarized as: The goal
is to �nd an assignment to the probability vector jpi subject
to available information. Problem is to �nd an assignment
of probabilities that maximizes the entropy. For example, we
always know jpi is normalized

h1jpi =
nX
i=0

pi = 1; (Condition 1)

There is a known assignment of the means, �r ( r =
1; 2; 3:::m) which satisfy:

hpjgr (jxi)i = E [gr(jxi)] =
nX
i=1

pigr(xi) = �r:

(Condition 2)
The Method of Lagrange Undetermined Multipliers is a stan-
dard method for solving an optimization problem subject to
constraints. The function we want to maximize is the entropy,
so it is adjoined to the free parameters (Lagrange undetermined
multipliers) times the equations for the constraints to form a
Lagrangian. These two condition the principle "The distribu-
tion, jpi ; that maximizes the uncertainty in the expected value
subject to the constraint of the available information� provides
such an assignment that gives the probability assignment.
Example (Assignment of probabilities with no known

information): The Lagrangian for entropy maximization is

L = �hpj ln pi � �0 (h1jpi � 1)
Thus the least informative assignment of the probabilities
when only the normalization condition is known is the as-
signment that the probabilities are uniformly distributed:

pi = hpjeii =
1

n
: (1)

This provides an explanation for Occam's Razor: "All things
being equal, the simplest explanation is the best", e.g. uniform
likelihood of assignment of truth to all explanations when
wer are in a state of complete ignorance. Einstein's Razor:
"Keep it as simple as possible�but not simpler." This implies
that additional knowledge beyond the means is necessary to
determine the probability assignment for propositions.
Example: The Lagrangian for entropy maximization (take

k = 1) with known mean, �r; is given by

L = �hpj ln pi � �0 (h1jpi � 1) (2)

�
mX
r=1

�r [hpjgr (jxi)i � �r]

1) To minimize with respect to the probabilities, we com-
pute the particular state hpjeii such that @L

@hpjeii is a
minimum:

@L

@ hpjeii
= 0 = ln pi + 1 + �0 +

mX
r=1

�rgr (xi) ; (3)
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2) Solving for the state's probability, hpjeii = pi; gives

hpjeii = e�(�0+1+
Pm

r=1 �rgr(xi))

= e[�(�0+1+h�jg(xi)i)];

(probability assignment)

3) Substituting probabilities into Condition 1 gives �rst
Lagrange undetermined multiplier as

e(�0+1) =
nX
i=1

e(�
Pm

r=1 �rgr(xi))

=
nX
i=1

e�h�jg(xi)i: (4)

4) Other Lagrange undetermined multipliers are obtained
by substituting the probability assignment into Condition
2

hpjgr (jxi)i =
nX
i=1

e�h�jg(xi)igr(xi) = �re
(�0+1)

(5)
which solves the problem of assigning the probabilities.

5) By de�ning the partition function as Z

e(�0+1) = Z; (partition function)

6) the Hamiltonian H is de�ned as

Hi =
mX
r=1

�rgr (xi) ; (6)

= h�jg(xi)i : (7)

7) The probability assignment becomes

hpjeii = pi =
exp(�Hi)

Z
; (8)

which is a familiar expression to physicists.
Thus, knowledge of the variance leads to be an exponen-

tial assignment to the probabilities. The physical connection
suggested this solution allows one to connect probabilty as-
signments to physical interaction models as we now show.

B. Maximum Entropy Applied to Connection Models
A connection model is a technique to that allows us to

breakdown or create an infrastructure in terms of information
sources/sinks and links which may or may not "share" the
information. Thus we tend to think of the mathematical
structure in graph theoretical terms. An alternative way to
think about this is in physical terms where the links represent
interactions, while the nodes are sources for interactions such
as a particle "interacting" with another particle.
Note, these notions are adopted from Harary [4]. There

exists a connection from the source (particle) i to j if
there is a sequence of sources i, i1; i2; :::; ik; j such that
(i, i1); (i1; i2) ; :::; (ik; j) that have some type of connection.
If there are connections between each of the

�
n
2

�
distinct

pairs of nodes, then the connection model is said to be

totally connected. An adjacency matrix , A; for an m�edge
connection model is the matrix

A =

a11 a12 � � � a1m�1 a1m266664
0 1 1 0 0
1 0 1 � 1
1 1 � � �
0 � � � �
0 1 � � 0

377775
am1 am2 � � � amm�1 amm

(9)

where aij = 1 if source i is connected to sourse j and zero if
it isn't. A source is not connected to itself (no self-interaction),
so aii = 0. An adjacency matrix is symmetric, so A = At.
A random connection model can be de�ned in a variety of

fashions with the randomness used to condition some aspect
of the connection model. Assume a �xed set of vertices with
a rule for assigning connection to the sources. A connection
model with a source set G = f1; 2; :::; ng and edge connection
state E = fi : X(i); i = 1; 2:::; ng where X(i) are indepen-
dent random variables with a probability rule for assignment
of a connection for (j = 1; 2; :::; n):

PfX(i) = jg = f(j) (10)

The simplest rule for a connection is f(j) = const:, which
is a uniform distribution or equal probability assignment of
a connection between sources. For each particle i, randomly
select a connection j and randomly decide to connect a particle
to another particle from the source set. A connection model
constructed in such a manner is referred to as a random
connection model.
Example: For an arbitrary connection model that has a

weight, wij ; associated with each connection between source
(i; j), we can associate a number that can be de�ned as a
probability by the assignment:

Pij =

(
wijP
j wij

if (i; j) is connected
0 if (i; j) is not connected.

(11)

De�nition: One can de�ne the Gibbs entropy of an en-
semble, E ; of connection models as

SE = �
X
G2E

P (G) ln(P (G)); (12)

subject to the normalization requirement that the probability of
instances of the connection model that occur in an ensemble
E as X

G2E
P (G) = 1: (13)

Example: Using MEP formalism with known prior infor-
mation about the particular property of a connection model,
xr(G); gives

ln(P (G)) + 1 + �0 +
X
G2E

�ixr(G) = 0: (14)

1) The probability assignment for the connection model
is

P (G) =
exp(�H(G))

Z(G)
: (15)
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2) The Hamiltonian of a connection model is

H(G) =
nX
i=1

�ixi(G): (16)

3) The Partition Function of the connection model is

Z(G) = exp (1 + �0) =
X
G2E

exp(�H(G)): (17)

4) The Interpretation of an instance of a connection model,
G; is a sample drawn from an ensemble E of connection
models.

5) This de�nition is equivalent to that of a physical system
de�ned over its microstate, provided the temperature is
�nite.

6) It is always possible to compute the expected value of
any connection property of the ensemble, x(G); over the
particular model as

E [x(G)] =
X
G2E

P (G)x(G): (18)

7) The way of arriving at a de�nition of the Hamiltonian
means we have a way of specifying the interaction model
for our network when we have a probability model for
the connections instead of "physical model".

8) We do not need to compute the statistical averages over
the connection probability distributions directly, instead
we can work from the de�nition of the partition function
of our connection model, which is often easier.

C. Some Observations Based Upon the Connection Model
Partition Function
When one de�nes the partition function Z (�), it is convient

to introduce �, a scaling parameter or the inverse temperature
for a physical system. For a collection of data ff(xi)g with a
probability vector, jpi, the partition function is

Z(�) =
X
i

exp (��pif(xi)) = exp (�� hpjf(x)i) : (19)

Take �rst derivative of Z(�) with respect to �

� @

@�
[Z(�)] = hpjf(x)i exp (�� hpjf(x)i)

= hpjf(x)iZ(�): (20)

Rearrangement of this expression gives the de�nition of the
expected value

� 1

Z(�)

@

@�
[Z(�)] = hpjf(x)i = hfi ; (21)

which is the de�nition of mean of the data set ff(xi)g. Thus,
if one can �nd the partition function for a data set, the mean
can be calculated from it.
A simple observation is that the left hand side of this

equation is equivalent to

� 1

Z(�)

@Z(�)

@�
= � d

d�
(lnZ) : (22)

The de�nition of the free energy is

F� = � ln (Z(�)) ; (23)

so
hfi = dF�

d�
: (24)

Take the second derivative of F�, which gives

� @

@�

�
� 1

Z(�)

@Z(�)

@�

�

= �

�
@Z(�)
@�

�2
Z2(�)

+
1

Z(�)

@2Z(�)

@�2

= �hfi2 +


f2
�

= �2f : (25)

the expression for variance is the second derivative of the free
energy:

d2F�
d�2

=


f2
�
� hfi2 : (26)

The variance, �2f , can be used to de�ne the heat capacity of
the network function f is

Cf = �
2�2f : (27)

Note, there are a variety of physics based variables that can be
de�ned as derivatives of the partition function including pres-
sure, average energy, capacity, temperature, entropy, etc. These
statistical mechanics variables may be worth considering in a
broader context.
Any characteristic, C, of a connection model can �nd

expected value from the formula

hCi = Z�1(G)
X
G

C(G) exp (�H((G))) : (28)

To measure the parameter C, we simply adjoin it as a term
added to the Hamiltonian

H(G) =

nX
i=1

�i�i(G) + �C: (29)

Calculating the expected value, hCi, for a linear interaction
potential from the free energy as

hCi = dF

d�

����
�=0

; (30)

this generalizes to enable us to calculate correlation functions
of the connection model as

h�i�j :::�li = Z�1
�
@

@�i

@

@�j
:::
@

@�l

�
Z: (31)

We can then calculate the correlation between two elements
as

@2F

@�i@�j
= h�i�ji � h�ii h�ji ; (32)

while the extension to higher orders is straight forward. Thus,
instead of interpreting �ixi(G) as the Lagrange undetermined
multiplier times some property of the connection model, it can
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be interpreted as an interaction potential between source, i;
and source j. The �i can be interpreted as scaling parameter
�, a �eld coupling parameter, or the inverse temperature. It
is possible to posit a variety of interaction models, work out
their consequences and work out the equivalent probability
distributions for them as well.

III. SYNTHESISIZING AN INTERACTION MODEL AS A
SOLUTION

The more we know, the more complicated the form of the
probability assignment becomes up to a point. In creating a
network that fuses weighted information from different sources
we are creating the equivalent of a physical interaction system
that has an underlying physics that we can strive to understand
and exploit this knowledge. Thus, an algorithm when looked at
this way is a physics model based on interpreting our weighing
of the data from different sources as an underlying interaction
model. Any assignment of probabilities can always be viewed
as the solution to a Bayesian Maximum Entropy problem.
When this information is combined in a state vector, we have
the possibility of hidden laws emerging. Given that is the case,
then we can ask the question: "What is the Maximum Entropy
problem that an assignment that a weighting scheme is the
answer to?" For other examples not related to this question,
see the suggestive paper by Kesavan [8].

A. Partition Functions. the Free Energy, and Models forH(G)
Graph theory has been used as a model for social networks

since the eighties. The idea of applying statistical mechanics
dates back to the seminal paper by Frank [3] and Strauss
[14], while a recent overview is found in [13]. Park [10]
has developed a detailed statiscal mechanics study of graph
models. This work is adpoted from these three sources. We
have introduced the notion of connection models rather than a
graph model because the notion of a connection model is more
evocative than a graph. Also, it is consitent with the older body
of work re�ected in Ross on the usage of probability models
in the study of general probability models [11].
The simplest form for the Hamiltonian for a connection

model is a model where we know the expected number of
interactions for the model, namely: hmi, so H(G) becomes

H�(G) = �m(G): (Model 0)

This model is trivial, so the next simplest Model is when
adjacency matrix A (G) has components aij

aij =

�
1 if source i is connected to source j
0 if source i is not connected to source j :

(33)
The number of interactions, m, is given by

m(G) =
X
i < j

aij (G) ; (34)

while the Hamiltonian is

H(G) = �
X
i < j

aij (G) : (Hamiltonian Model 1)

The partition function (PF) is

Z�(G) =
X
G

exp(�H(G))

=
X
aij

exp(��
X
i < j

aij (G))

=
Y
i < j

1X
aij=0

exp(��aij (G))

=
Y
i < j

(1 + exp (��))

= (1 + exp (��))(
n
2) : (35)

The Model 1 free energy is given by

F (Model 1)� = � ln
�
Z(1)� (G)

�
= �

�
n

2

�
ln (1 + exp (��)) ;

(36)
while the mean is

hfi(Model 1) = dF�
d�

=

�
n
2

�
(1 + exp (�))

: (37)

The standard deviation is

�2f (Model 1) = �
�
n
2

�
exp (�)

(1 + exp (�))
2 ; (38)

and the heat capacity is

C
(Model 1)
f = ��2

�
n
2

�
exp (�)

(1 + exp (�))
2 : (39)

To compare the interaction model to the underlying connec-
tion interaction probability model, we reparameterize p as

p =
1

(1 + exp (�))
; (40)

so
exp (�) =

�
1� p
p

�
; (41)

and therefore
p =

exp (��)
(1 + exp (��)) (42)

Thus, solving for (1� p);

p exp (�) = (1� p) = 1

(1 + exp (��)) : (43)

The �rst moment is

hfi(1) =
�
n

2

�
p; (44)

while the standard deviation is

�2f (1) =

�
n

2

��
p� p2

�
: (45)

The heat capacity is given by

C
(1)
f =

�
n

2

��
ln

�
1

p
� 1
��2 �

p� p2
�
: (46)
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The partition function is

Z�(G) = exp (�F�) = (1 + exp (��))(
n
2)

= (1� p)(
n
2): (47)

Therefore the probability, P (G) for the connection model
ensemble is

P (G) =
exp (�H)

Z
=

exp(��m)
(1 + exp (��))(

n
2)

=

�
1� p
p

��m
(1� p)(

n
2)

= pm(1� p)(
n
2)�m: (48)

This is the probability for a graph for which each of the
�
n
2

�
possible edges appear with probability p, which is the well
known Bernoulli random graph model studied by Erdos and
Renyi.

B. General Model
A more general model is to replace �i with �ij so the

Hamiltonian is

H(G) =
X
i < j

�ijaij(G); (General Model)

then the partition function

Z
(Model 3)
~� (G) =

Y
i < j

�
1 + e��ij

�
: (49)

The free energy is

F (Model 3)� = � ln
�
Z(Model 3)� (G)

�
= �

X
i < j

ln
�
1 + e��ij

�
; (50)

therefore the �rst moment is

hfi(Model 3) = dF
(Model 3)
�

d�
=

1

(1 + e�ij )
; (51)

the standard deviation is

�2f (Model 3) =
d2F

(Model 3)
�

d�2
= � e�ij

(1 + e�ij )
2 ; (52)

and the heat capacity is

C
(Model 3)
f = ��2ij

e(�ij)�
1 + e(�ij)

�2 : (53)

Then we can reparameterize p as

pij =
1

(1 + e�ij )
: (54)

Note, some simpli�ed models beyond Model 1 are special
cases with �ij =

�
�i + �j

�
for Model 2 and �ij = � for

Model 1.
In general, one can specify interaction Hamiltonian as

H =
X
i < j

�ij�ij ; (General Hamiltonian Model)

where �ij is parameter that couples each source together and
is the connection sequence satis�es �i =

P
j �ij . The partition

function is
Z =

Y
i<j

�
1 + e��ij

�
; (55)

while the free energy is

F = �
X
i < j

ln
�
1 + e��ij

�
: (56)

Note the probability of an interaction between source i and j
is the expected number of the connection sequence, then

pij = h�iji =
@F

@�ij
=

1

(1 + e�ij )
: (57)

Underlying basis for the parameterization that gives us
Bernoulli model with

P (G) = pmij (1� pij)(
n
2)�m: (58)

Note, the term
P

i Ci�i can be added to Hamiltonian without
changing the probability model we have derived. This enables
us to relate hCii to characteristic of the interaction model.
Furthemore, the Bernoulli probability model derived from
different types of interaction are all the same. So, one can
conclude that any interaction model that can be cast into the
above form is a hidden Markov model. This observation allows
us to connect many seemingly disparate facts.

C. Example: Decision Fusion
A design is created from disparate elements, that when

combined form a composition (true of artistic or engineering
design). Each discipline has "atoms of composition" or atomic
units that are fused together to form a speci�c instance of a
design. In this instance, the rules for assigning connections
are the rules of composition. In artistic designs, the method
of fusion that constitute the �nished product is based on the
individual interpretations of the group aesthetic that falls under
the aegis of "artistic temperament". For engineers, the group
aesthetic must have some familiarity with the requirements
of "physical reality". While it is dif�cult to arrive at a
mathematical criteria that helps clarify the direct problem of
the process of composition, the inverse problem of determining
how the composition was generated is possible because we can
infer law based on the probability assignment.
Our goal in this paper is to outline the mathematics of com-

position of decisions, which we have already done. Decision
Composition can be viewed as a fusion of individual atoms
of composition which are weighted components with these
properties:
1) The numerical weights of the atoms of composition of
a design can be assigned values between zero and one.

2) The sum of the weights can be normalized, so the sum
of the weights of all the atoms of composition in an
instance of a design add up to be one.

3) These two properties are mathematically equivalent to
an assignment of probabilities, so they can be treated as
probabilities.
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For example, a particular design can always be viewed as
an instance of, or a particular sample drawn from a space of
possible compositions that have common elements. Proof of
a mathematics theorem can also be viewed as a design with
elements drawn from axiomatic systems combined with the
glue of the rules of inference. Thus conceptually it is possible,
in principle, to consider a proof as a composition relative to
some system of music or as a painting. From the Bayesian
perspective, any suf�ciently complex problem has incomplete
knowledge for us to try and reason through.
Reasoning from the perspective of Lack of Knowledge is

equivalent to probabilistic reasoning. Laplace, Bayes, Gibbs,
Shannon, Jaynes are source of this idea [5],[6], [7], [12].
It has proven to be the key to creating a real Information
Age. "Probability is the logic of reasoning in the presence of
uncertainty." Assignment of probabilities based on available
information is Bayesian reasoning. This provides a solution
of assignment of probabilities which is a Maximum Entropy
Problem (MEP). Thus a decomposition of a design into
probabilities can be viewed as a (there is no the) solution
to a MEP. Given that MEP is the method that provides the
answer, then we can ask the question: "What is the Maximum
Entropy problem that an assignment of design weights is the
composition an answer to?" Being able to answer this question
for "design classes" provides us a means to classify Design as
a mathematical problem. Design algorithms can be then be
ordered in terms of the complexity of the problem solved.
By providing the mathematical basis for synthesizing design
as a composition, we hope to provide a pathway to analyze
decisions from the perspective of design. This allows decisions
to be understood on a more quantities basis and ultimately
bring the decision maker in the fusion process in a more
quantitative process. This is illustrated with a simple example.
There are three ways to think about how decisions are

synthesized: a branching process, a fusion problem from
multiple information sources, or a grey scale picture where
the lighting re�ects the degree of connection between the
individual components. Each of these three methods is useful
depending on the problem domain.
The visual model is a way of reconstructing a complicated

process where there are no particular analytical details known
for its construction. By assigning different weighting schemes
we can see a decision emerges out of a morass of disparate
data.
For a branching process, the starting point can be thought of

as the �nal decision, and the branches constitute the elements
that went into the decision. At each of the branching levels the
decisions have weights that must normalize like probabilities,
so the formulation of the connection model adjacency matrix,
A; reveals structure associated with the retrodiction process.
The structure of the operator algebra gives an algebraic un-
derstanding of decisions in terms of "operator logic" of the
matrix.
For fusion problems associated with target tracking, the

third method is most useful. The asynchronous multi-sensor
track fusion problem can be stated as follows: Given a number

of asynchronous valid tracks, fXi(tki jtki),Pi(tki jtki)g, i =
1; 2; :::; n, that arrive at the fusion center during the time
interval [tk�1; tk], �nd the best estimate in the minimum
mean square sense of the system state at time, tk; when it
is computed according to the fusion rule.

Xf (tkjtk) =
nX
i=1

Li(tki)Xi(tki jtki) (59)

where the Li's are unknown weighting matrices to be deter-
mined. The two constraints imposed on the fused track are
unbiased if

nX
i=1

Li�(tki ; tk) = I: (60)

This represents the �rst constraint on the choice of the
weighting matrices. If we solve for Ln, we have

Ln = �(tk; tkn)�
n�1X
i=1

Li�(tki ; tkn): (61)

The error covariance matrix of the fused track can be
de�ned as

Pf (tkjtk) = Ef ~Xf (tkjtk) ~Xf (tkjtk)
0
g (62)

which allows determination of the weights Li which de�ne
the optimal asynchronous track fusion �lter. Further details
about this track fusion approach are found in [2] and [1]. The
solution is encapsulated in theorems like this:
Theorem 1: The error covariance matrix of the fused track

using the fusion rule is given by

Pf (kjk) =
n�1X
i=1

n�1X
j=1

LiMijL
0
j +

n�1X
i=1

LiNi +
n�1X
i=1

NiL
0

i +Mn:

(63)
Theorem 2 : The minimum mean square solution of the

asynchronous track fusion problem using the fusion rule is
given by

Xf (tkjtk) =
nX
i=1

LiXi(tki jtki); (64)

Pf (tkjtk) = LML
0
+ LN +N

0
L
0
+Mn; (65)

where
[L1 L2 ::: Ln�1] = �N

0
M�1; (66)

Ln = �(tk; tkn)�
n�1X
i=1

Li�(tki ; tkn): (67)

The reason this general example has been presented is that
it is indicative of all fusion algorithms; they are variations
on a similar theme. With the proper rede�nitions of matrices,
both track and data fusion amount to the same thing: weighted
(positive semi-de�nite and the sum is normalized to one)
combinations of data. The results can be extremely com-
plicated, dif�cult to understand, dif�cult to predict in terms
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of performance, and dif�cult to determine the algorithm's
underlying correctness, but they have the same underlying
mathematical form when understood properly. Given this
observation, an alternative suggests itself as a means of un-
derstanding these types algorithms based on maximum entropy
analysis. An example is the Bar-Shalom-Campo Fusion Rule:

Xf (kjk) = X2(kjk) + (P22 � P21)U�1[X1(kjk)�X2(kjk)];
(68)

Pf (kjk) = P22 � (P22 � P21)U�1[P22 � P12]: (69)

This result is simple enough to work out the equivalent
interaction model for and will be the subject of future work.

IV. CONCLUDING COMMENTS

The translation: Interaction Model , Probability Model
provides a richer interpretation of "physics". This allows
us to consider more general types of interactions that the
statistical mechanics crank can be brought to bear. Fusion
of weighted information from different "atomic composition"
elements is equivalent to creating an interaction system with
an underlying physics that we can strive to understand. There
is always a design physics model based on interpreting the
weights associated with the components of a composition.
This provides an entirely new method to analyze Design
mathematically from the perspective of inverse problems based
on the MEP perspective. It also provides a new basis for
the mathematization of design. This is an area that requires
further development. The �eld has rich predictive capability,
the question is how useful it is when applied to speci�c
problem domains. Each �eld raises interesting problems, and
even more interesting problems will be raised as the initial
ones are solved.
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